1,410 research outputs found

    Electrochemical reduction of carbamazepine in ethanol and water solutions using a glassy carbon electrode

    Get PDF
    The electrochemical reduction of carbamazepine in ethanol and water using a glassy carbon electrode has been studied. In all experimental conditions of scan rate and concentration of carbamazepine an irreversible cathodic wave was observed by cyclic voltammetry (CV). Electrochemical parameters and a plausible EqC mechanism have been reported from the electrochemical measurements and digital simulation. The values of thermodynamic E1/2 were correlated with solvent polarity parameters that it can be interesting for biological, pharmaceutical and forensic purposes. Limits of Detection (LOD) for DPV are 1.1 and 9.0 g/mL (4.65x10-6 and 3.81x10-5 M) in ethanol and water, respectively. The precision and recoveries obtained for tablets and plasma samples showed that the method could be successfully used for analysis

    Non-Abelian Chern-Simons-Higgs vortices with a quartic potential

    Get PDF
    We have constructed numerically non-Abelian vortices in an SU(2) Chern-Simons-Higgs theory with a quartic Higgs potential. We have analyzed these solutions in detail by means of improved numerical codes and found some unexpected features we did not find when a sixth-order Higgs potential was used. The generic non-Abelian solutions have been generated by using their corresponding Abelian counterparts as initial guess. Typically, the energy of the non-Abelian solutions is lower than that of the corresponding Abelian one (except in certain regions of the parameter space). Regarding the angular momentum, the Abelian solutions possess the maximal value, although there exist non-Abelian solutions which reach that maximal value too. In order to classify the solutions it is useful to consider the non-Abelian solutions with asymptotically vanishing AtA_t component of the gauge potential, which may be labelled by an integer number mm. For vortex number n=3n=3 and above, we have found uniqueness violation: two different non-Abelian solutions with all the global charges equal. Finally, we have investigated the limit of infinity Higgs self-coupling parameter and found a piecewise Regge-like relation between the energy and the angular momentum.Comment: 9 pages, 13 figure

    3D Digital techniques applied to new design products based on cultural heritage elements

    Get PDF
    The aim of this paper is to present the 3D digitalization and posterior treatment of complex heritage elements existing in the Alhambra Palace, so that they can be used as the starting point for the development of new products. Not only are the direct results of 3D digitalization exploitable and essential for the documentation, recording and research of heritage elements, but also these 3D files compiling the original elements are to be used as the blueprints for the future development of new products and designs, such as constructive elements regarding their application at interior design and architecture projects. The enrichment provided in new products is undeniable as they will depart from the same provenance as the heritage element, which allows the product to increase its market value, and the opening of new Market niches. It is very important to highlight that any new product creation process will be grounded in full respect and protection of cultural heritage. For this reason, under no circumstances will the original elements be completely reproduced, not even partial developments of them since this action could undergo the risk of a non-responsible reproduction of the heritage elements.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Relationship between complex and simple spike activity in macaque caudal vermis during three-dimensional vestibular stimulation

    Get PDF
    Lobules 10 and 9 in the caudal posterior vermis [also known as nodulus and uvula (NU)] are thought important for spatial orientation and balance. Here, we characterize complex spike (CS) and simple spike (SS) activity in response to three-dimensional vestibular stimulation. The strongest modulation was seen during translation (CS: 12.8 ± 1.5, SS: 287.0 ± 23.2 spikes/s/G, 0.5 Hz). Preferred directions tended to cluster along the cardinal axes (lateral, fore-aft, vertical) for CSs and along the semicircular canal axes for SSs. Most notably, the preferred directions for CS/SS pairs arising from the same Purkinje cells were rarely aligned. During 0.5 Hz pitch/roll tilt, only about a third of CSs had significant modulation. Thus, most CSs correlated best with inertial rather than net linear acceleration. By comparison, all SSs were selective for translation and ignored changes in spatial orientation relative to gravity. Like SSs, tilt modulation of CSs increased at lower frequencies. CSs and SSs had similar response dynamics, responding to linear velocity during translation and angular position during tilt. The most salient finding is that CSs did not always modulate out-of-phase with SSs. The CS/SS phase difference varied broadly among Purkinje cells, yet for each cell it was precisely matched for the otolith-driven and canal-driven components of the response. These findings illustrate a spatiotemporal mismatch between CS/SS pairs and provide the first comprehensive description of the macaque NU, an important step toward understanding how CSs and SSs interact during complex movements and spatial disorientation

    The influence of image interactivity upon user engagement when using mobile touch screens

    Get PDF
    Touch screens are a key component of consumer mobile devices such as smartphones and tablets, as well as an increasingly common self-service component of information retrieval on fixed screens and mobile devices in-store. The ubiquity of touch screens in daily life increases consumer accessibility and extended use for shopping, whilst software innovations have increased the functionality of touch screens, for example the extent to which images respond to fingertip control. This study examines how users engage with interactive visual rotation and tactile simulation features while browsing fashion clothing products on touch screen devices and thus contributes to retail touch screen research that previously focused on in-store kiosks and window displays. Findings show that three dimensions of user engagement (endurability, novelty and felt involvement) are positively influenced by both forms of manipulation. In order to examine the extent to which touch screen user engagement varies with individual preferences for an in-store experience, the paper also examines whether user engagement outcomes are mediated by an individual's need for physical touch. Findings indicate that the need for touch does not explain the variance between individuals. We conclude that touch screen technology complements the physical retail environment

    Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition

    Get PDF
    The granular layer is the input layer of the cerebellar cortex. It receives information through mossy fibers, which contact local granular layer interneurons (GLIs) and granular layer output neurons (granule cells). GLIs provide one of the first signal processing stages in the cerebellar cortex by exciting or inhibiting granule cells. Despite the importance of this early processing stage for later cerebellar computations, the responses of GLIs and the functional connections of mossy fibers with GLIs in awake animals are poorly understood. Here, we recorded GLIs and mossy fibers in the macaque ventral-paraflocculus (VPFL) during oculomotor tasks, providing the first full inventory of GLI responses in the VPFL of awake primates. We found that while mossy fiber responses are characterized by a linear monotonic relationship between firing rate and eye position, GLIs show complex response profiles characterized by "eye position fields" and single or double directional tunings. For the majority of GLIs, prominent features of their responses can be explained by assuming that a single GLI receives inputs from mossy fibers with similar or opposite directional preferences, and that these mossy fiber inputs influence GLI discharge through net excitatory or inhibitory pathways. Importantly, GLIs receiving mossy fiber inputs through these putative excitatory and inhibitory pathways show different firing properties, suggesting that they indeed correspond to two distinct classes of interneurons. We propose a new interpretation of the information flow through the cerebellar cortex granular layer, in which mossy fiber input patterns drive the responses of GLIs not only through excitatory but also through net inhibitory pathways, and that excited and inhibited GLIs can be identified based on their responses and their intrinsic properties
    • …
    corecore